EVAPORATION OF ARBITRARY-SIZE DROP IN
ELECTROMAGNETIC RADIATION FIELD
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and L. A, Uvarova

A theory of the evaporation of an arbitrary-size drop in a field of electromagnetic radiation is
constructed using the Lees method. An analytic expression is found for the heat and mass fluxes,
An equation describing the change in drop radius as a function of time is obtained.

Consider a pure drop of volatile material (radius R) in a binary gas mixture, the first component of which
consists of molecules of the volatile drop material and the second of inert-gas molecules.

Monochromatic electromagnetic radiation of wavelength A, falls on the drop, Part of the radiation energy
is absorbed by the drop and consumed in evaporation. Following [1], it will be assumed that the thermal ener-
gy released in the drop volume is homogeneously distributec_l in it with quantity q

_ BIKy(R, Ao)
4R
where [ is the radiation intensity; Kp is the absorption coefficient [1].
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To determine the evaporation time of the drop it is necessary to know the explicit form of the expres-
sions for the heat-flux density released from the drop surface Q and the material of the first (volatile) compo-
nent N;. The values of Q and Ny will be found in a quasistationary approximation by the Lees method from the
solution of the kinetic Boltzmann equation under the condition that ny <n and (Tg — To)/Te <1 (ny and ny are
the molecular densities of the first and second components of the gas mixture; n = n; +ny; Tg is the tempera-
ture of the drop surface; and T, is the gas temperature at infinity).

The condition n; < n is necessary since the Lees method does not take info account the convective motion
of the medium and therefore is only used for n; € n, In its turn, this condition significantly simplifies the de-
rivation of the expression for Nj.

The use of the Lees method for drop evaporation is outlined in detail in [6, 7}. Therefore, the expres-
sions for the flux densities N; and Q are not derived here but simply stated as (2), (3):

TABLE 1, Surface Temperature of Water
Drop 4s a Function of Drop Radius R and
Intensity of Electromagnetic Radiation I,

W/em?

R U T K

1=10 =10 1=106°
102 330 ) - —_
10 297 317 —
I 294.5 296 308
10-1 294 294,5 295,5
1072 293,5 294 . 295
10-3 293,2 293,5 294
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Fig. 1. Values of ¢(Tg, R), cal/cm?- sec for
fixed values of the radius (a) and fixed tem~
perature (b): a) R = 1073 u(1),1072(2), 1071 (3),
1 (4), 10 (5), 10% u (6); b) Tg = 303 (1), 313°K
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Fig. 2. Dependence of drop radius on dimensionless
evaporation time 7.

Fig. 3. Comparison of the experimental and theoretical
dependence of R, 14, ont, sec.
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where ny,, 2nd Dy, are the molecular densities of the vapor and inert gas at infinity; m; and m, are the molecular
masses of the vapor and gas; ap, is the evaporation factor of the volatile component; n,g is the saturation vapor
density at temperature Tg; exp (2V16/RKTg) is the Kelvin factor; k is the Boltzmann constant; A is the mean free
path of the gas-mixture molecules; o and B are coefficients

U.:—am,—?—l/i-( +&_)2 (1+ m, )—1/2,
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P= T5m

(o and 0, are the diameters of the vapor and gas molecules).

In deriving Egs. (2)-(3) the model collision integrals in Gross and Krook form were used [8]. Equation
(2) is congiderably simpler in structure than the formula for the vapor flux obtained in [6]. In the limiting cases
for R > A and R € A, Eq.(2) transforms to the Shankar formula. These expressions give similar values for
vapor fluxes in the intermediate range of Knudsen Kn = MR, i.e., for R ~ A, For example, in the case of air—
vapor mixture the maximum difference between the vapor fluxes calculated from Eq. (2) and the Shankar formula
does not exceed 30%,

The heat transfer is described using an expression obtained for a one-component (ny < ny) monoatomic
gas. Applications usually involve monoatomic gases. As comparison with experiment shows, the estimate is
expediently made using Eq. (4), which takes into account the internal degrees of freedom of the gas molecules

2kT T,—T. R?
Q= ]/:nmz e TR 7 @

where f is the Einstein correction factor [10]

3.6 092¢,—2.75

f=13+
¢, (z + 0.53¢,— 0.76) c,

(cy is the molar specific heat of the gas at constant volume; z is the correction for inelastic collision).

The distribution of the temperature T, in the drop volume is described by the Laplace equation, the solu-
tion of which is

RZ

where %4 is the thermal conductivity of the drop material.

In Egs. (2)-(5) the unknowns are the saturated vapor density and the temperature Tg, which may be found
from Eq. (7); this equation is obtained by substituting Eqgs. (2), (4), and (5) into Eq. (6), taking into account the
continuity of the heat flux passing through the drop surface

dT;
dr

QR) + LmN; (R) = — % )
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r=R
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where L is the heat of phase fransition,

In the general case Eq. (7) is transcendental and cannot be solved analytically. The dependence of ¢(Tg,
R)on Tg for a water drop is shown in Fig, la for fixed values of R; from these curves, knowing IKp/4 it is sim-
ple to determme Tg and hence njg. The dependence of ¢(Ts, R) on R for fixed values of Tg is shown in Fig. 1b
(R is plotted in a logarithmic scale along the abscissa).

Table 1 shows values of Tg obtained using the curves in Fig. 1a for various values of I and R. As is evi-
dent from Table 1, for a drop radius R = 10~! p even at an intensity I = 10° W/em? the surface temperature of
the drop differs only slightly from the temperature of the unperturbed vapor —gas mixture (in obtaining the
values of Ty it is assumed that in the absence of radiation the drop is in thermodynamic equilibrium with the

surrounding medium and T, = 293°K).
The dependence of the drop radius on the time t is described by the conservation equation for the drop
mass M

_ _daflf_ — 4nRm,N, (R), (8)

where N; may be found from Eq.(2) using Eq. (7).

294



In the general case Eq. (8) does not integrate in quadratures and it must be solved numerically.

From Eqs.(2), (7), and (8) the dependence of the drop radius R on the evaporation time t was estimated .
for a water drop evaporating in air under the action of CO,-laser radiation of wavelength A; = 0.16 y and inten-
sity I = 3+ 10% and 10° W/cm?. The results are shown in Fig. 2: Curvel isplotted fora waterdrop of initial
radius R; = 3 ¢, evaporating in a radiation field of intensity I = 3- 10> W/em?® and curve 2 corresponds to Rj =
11 and I =10? W/cm The ratio R;/R is plotted in a logarithmic scale along the abscissa and the dimension-
less time 7 = tDm/R is plotted along the ordinate (Dy, is the binary-diffusion coefficient). As is evident from
Fig. 1, when a water drop of radius less than the wavelength of the electromagnetic radiation evaporates (R <
A, T ~ 1n(Ri/R)infields of sufficiently large intensity in the first stage. This dependence arises because the
main mechanism of heat liberation from the drop initially is evaporation of the drop material since @ < Lm;N;
and therefore the flux density N;R) ~ Kp. In turn, the absorption factor Kp ~ R.

With decrease in drop size in the course of evaporation its surface temperature falls and molecular heat
conduction plays a more important part in the heat-liberation mechanism (this period corresponds to the elbow
in the curves). Finally, when the radius becomes very small (R < A} evaporation occurs mainly as a result of
the effect of the Kelvin factor, since heat liberation in the volume of the drop as a result of absorption of elec-
tromagnetic energy is very small at this dropsize and the concenfration ny, is assumed in the calculation to be
equal to the saturation vapor concentration at temperature T (this period corresponds to the section of slow
variation on the curves).

In Fig. 3 the theoretical results are compared with the experimental data of-{8] obtained in the evapora-
tion of a water drop in a field of electromagnetic radiation of intensity I = 25 W/em? (Ag = 10.6 p): Curve 1 is
plotted from Eqgs. (7)-(8) and curve 2 is taken from [9]. The agreement between theory and experiment is evi-
denfly good. The dependence of R on t in this figure is linear because the heat liberation in the considered
range of drop radii occurs mainly by evaporation of the drop material and the absorption factor Kp (in contrast
to the case in Fig. 2) is essentially unchanged in this range of drop-size variation.

Unfortunately, the literature does not include any experimental data on evaporation of drops with large
Knudsen numbers in the field of electromagnetic radiation.
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